Biphoo Feedback
Please Contact Us
Captcha *
Home Health Disease Health Eye Health
About Eye Health

Eyes are the organs of vision. They detect light and convert it into electro-chemical impulses in neurons. The simplest photoreceptor cells in conscious vision connect light to movement. In higher organisms the eye is a complex optical system which collects light from the surrounding environment, regulates its intensity through a diaphragm, focuses it through an adjustable assembly of lenses to form an image, converts this image into a set of electrical signals, and transmits these signals to the brain through complex neural pathways that connect the eye via the optic nerve to the visual cortex and other areas of the brain. Eyes with resolving power have come in ten fundamentally different forms, and 96% of animal species possess a complex optical system. Image-resolving eyes are present in molluscs, chordates and arthropods

Complex eyes can distinguish shapes and colours. The visual fields of many organisms, especially predators, involve large areas of binocular vision to improve depth perception. In other organisms, eyes are located so as to maximise the field of view, such as in rabbits and horses, which have monocular vision.

Photoreception is phylogenetically very old, with various theories of phylogenesis. The common origin (monophyly) of all animal eyes is now widely accepted as fact. This is based upon the shared genetic features of all eyes; that is, all modern eyes, varied as they are, have their origins in a proto-eye believed to have evolved some 540 million years ago and the PAX6 gene is considered a key factor in this. The majority of the advancements in early eyes are believed to have taken only a few million years to develop, since the first predator to gain true imaging would have touched off an "arms race" among all species that did not flee the photopic environment. Prey animals and competing predators alike would be at a distinct disadvantage without such capabilities and would be less likely to survive and reproduce. Hence multiple eye types and subtypes developed in parallel (except those of groups, such as the vertebrates, that were only forced into the photopic environment at a late stage).

Pit eyes, also known as stemma, are eye-spots which may be set into a pit to reduce the angles of light that enters and affects the eyespot, to allow the organism to deduce the angle of incoming light. Found in about 85% of phyla, these basic forms were probably the precursors to more advanced types of "simple eye". They are small, comprising up to about 100 cells covering about 100 µm. The directionality can be improved by reducing the size of the aperture, by incorporating a reflective layer behind the receptor cells, or by filling the pit with a refractile material.

Pit vipers have developed pits that function as eyes by sensing thermal infra-red radiation, in addition to their optical wavelength eyes like those of other vertebrates.
Spherical lensed eye
Compound eyes
An image of a house fly compound eye surface by using scanning electron microscope
Anatomy of the compound eye of an insect
Arthropods such as this Calliphora vomitoria fly have compound eyes

A compound eye may consist of thousands of individual photoreceptor units or ommatidia (ommatidium, singular). The image perceived is a combination of inputs from the numerous ommatidia (individual "eye units"), which are located on a convex surface, thus pointing in slightly different directions. Compared with simple eyes, compound eyes possess a very large view angle, and can detect fast movement and, in some cases, the polarisation of light (Even the trained human eye can determine the orientation of polarized light which manifests in a phenomenon called Haidinger's brush.) Because the individual lenses are so small, the effects of diffraction impose a limit on the possible resolution that can be obtained (assuming that they do not function as phased arrays). This can only be countered by increasing lens size and number. To see with a resolution comparable to our simple eyes, humans would require very large compound eyes, around 11 m in radius.

Good fliers such as flies or honey bees, or prey-catching insects such as praying mantis or dragonflies, have specialised zones of ommatidia organised into a fovea area which gives acute vision. In the acute zone the eyes are flattened and the facets larger. The flattening allows more ommatidia to receive light from a spot and therefore higher resolution. The black spot that can be seen on the compound eyes of such insects, which always seems to look directly at the observer, is called a pseudopupil. This occurs because the ommatidia which one observes "head-on" (along their optical axes) absorb the incident light, while those to one side reflect it.

The vitreous is the transparent, colourless, gelatinous mass that fills the space between the lens of the eye and the retina lining the back of the eye. It is produced by certain retinal cells. It is of rather similar composition to the cornea, but contains very few cells (mostly phagocytes which remove unwanted cellular debris in the visual field, as well as the hyalocytes of Balazs of the surface of the vitreous, which reprocess the hyaluronic acid), no blood vessels, and 98–99% of its volume is water (as opposed to 75% in the cornea) with salts, sugars, vitrosin (a type of collagen), a network of collagen type II fibres with the mucopolysaccharide hyaluronic acid, and also a wide array of proteins in micro amounts.
Pigmentation

The pigment molecules used in the eye are various, but can be used to define the evolutionary distance between different groups, and can also be an aid in determining which are closely related – although problems of convergence do exist.

Opsins are the pigments involved in photoreception. Other pigments, such as melanin, are used to shield the photoreceptor cells from light leaking in from the sides. The opsin protein group evolved long before the last common ancestor of animals, and has continued to diversify since.

Share the joy

Pricing

You Do It Yourself

Biphoo choose a model site
You choose a model site.
Biphoo add your own content
You add your own content to homepage and 2 model pages.
Setup Fee: $14.99
More Pages: $0/page
Monthly Fee: $14.99

We Get You Started

Biphoo choose a model site
You choose a model site.
Biphoo add your own content
We add your content to homepage and 2 model pages.
Setup Fee: $49.00
More Pages: $15/page
Monthly Fee: $14.99

We Custom Design

Biphoo choose a model site
We create a custom design.
Biphoo add your own content
We add your content to homepage and 2 model pages.
Setup Fee: $99.00
More Pages: $20/page
Monthly Fee: $20.99
Why Do We Need Innovation in Health Care?
Medicare for All !!
Drugs & Diseases
Drugs & Diseases
There are a variety of drugs prescribed for patients disease, find drugs used to treat a particular disease or condition, Rare disease research helps us understand medicine for all diseases.
Need a Doctor
Need a Doctor
Your family doctor takes the long view - your lifetime, your history, your family history and your potential future.The ability to help people directly and make them happier.
Hospital near you
Hospital Near You
The easiest and fastest way to find hospitals and medical centers near you and view services each provides. Search by full address,or city and state, zip code.
What our customers are saying
Brian Stephen
Tony Kong
Alex Candlar
Devan Pryde
Jana Kasperke
Alena Nicholas
Tommy Semnoo
f